Multi-Adaptive Galerkin Methods for ODEs I
نویسنده
چکیده
We present multi-adaptive versions of the standard continuous and discontinuous Galerkin methods for ODEs. Taking adaptivity one step further, we allow for individual timesteps, order and quadrature, so that in particular each individual component has its own time-step sequence. This paper contains a description of the methods, an analysis of their basic properties, and a posteriori error analysis. In the accompanying paper [A. Logg, SIAM J. Sci. Comput., submitted], we present adaptive algorithms for time-stepping and global error control based on the results of the current paper.
منابع مشابه
Multi-Adaptive Galerkin Methods for ODEs II: implementation and Applications
Continuing the discussion of the multi-adaptive Galerkin methods mcG(q) and mdG(q) presented in [A. Logg, SIAM J. Sci. Comput., 24 (2003), pp. 1879–1902], we present adaptive algorithms for global error control, iterative solution methods for the discrete equations, features of the implementation Tanganyika, and computational results for a variety of ODEs. Examples include the Lorenz system, th...
متن کاملMulti-adaptive Galerkin methods for ODEs V: Stiff problems
We develop the methodology of multi-adaptive time-stepping for stiff problems. The new algorithm is based on adaptively stabilized fixed point iteration on time slabs and a new method for the recursive construction of time slabs. Numerical examples are given for a series of well-known stiff and non-stiff test problems.
متن کاملComparison of different numerical methods for calculating stress intensity factors in analysis of fractured structures
In this research, an efficient Galerkin Finite Volume Method (GFVM) along with the h–refinement adaptive process and post–processing error estimation analysis is presented for fracture analysis. The adaptive strategy is used to produce more accurate solution with the least computational cost. To investigate the accuracy and efficiency of the developed model, the GFVM is compared with two versio...
متن کاملMultisymplecticity of hybridizable discontinuous Galerkin methods
In this paper, we prove necessary and sufficient conditions for a hybridizable discontinuous Galerkin (HDG) method to satisfy a multisymplectic conservation law, when applied to a canonical Hamiltonian system of partial differential equations. We show that these conditions are satisfied by the “hybridized” versions of several of the most commonly-used finite element methods, including mixed, no...
متن کاملAdaptive Sparse Galerkin Methods for Vibrating Continuous Structures
Adaptive reduced-order methods are explored for simulating continuous vibrating structures. The Galerkin method is used to convert the governing partial differential equation (PDE) into a finite-dimensional system of ordinary differential equations (ODEs) whose solution approximates that of the original PDE. Sparse projections of the approximate ODE solution are then found at each integration t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2003